New Concepts for Urban Highways Control

Martin Gregurić, Edouard Ivanjko, Sadko Mandžuka

edouard.ivanjko@fpz.hr
University of Zagreb, Croatia
 – Established in 1669.
 – 29 faculties and 3 academies
 – 4,850 research staff members and 50,000 students

Faculty of Transport and Traffic Sciences
 – 15 departments
 • Cover all transport modes, logistics, ITS, aeronautics
 – 100 research staff members / 2200 students
 – Publisher of the journal
 PROMET – Traffic&Transportation
 • Cited in SCIE, TRIS, Geobase, FLUIDEX, and Scopus
Outline

• Introduction
• Ramp metering traffic control approach
• Learning based ramp metering
• Cooperation between ramp metering, VSLC and vehicles
• Simulator CTMSIM and augmentation
• Simulation results
• Conclusion & Future work
• Today’s highways cannot fulfil desired level of service (LoS) due to congestions

• Especially the case of urban highways
 – Many on- and off-ramps
 – Lack of space for infrastructural build-up
 – Serve transit and local urban traffic

• Solution in ITS based highway control systems
 – Ramp metering
 – Variable Speed Limit Control (VSLC)
 – Prohibiting lane changes system

• Cooperation between several highway control systems
• Uncontrolled platooned vehicle entry from on-ramps into mainstream induce
 – Slowdowns in mainstream traffic
 – Queues at on-ramps
 – Higher risk of incidents
Ramp metering traffic control approach

- Highway control approach **ramp metering**
 - Special road signals (traffic lights) at on-ramps
 - Measured traffic data in real time
 - Ramp metering control algorithm
 - **Local**
 - ALINEA
 - Demand-Capacity
 - **Cooperative**
 - Competitive
 » SWARM
 » Bottleneck
 - Comparative
 » HELPER
 » LINKED
 - Integrated
 » *Fuzzy* logic based
 » MATALINE, etc.
• Variable traffic demand has to be managed
 – Adaptive neural-fuzzy inference system (ANFIS)
 • Neural Network (ANN)
 • Fuzzy Inference System (FIS)
 – ANFIS algorithm learned using several different ramp metering algorithms
 • ALINEA
 • SWARM
 • HELPER
• Standalone urban highway control strategy not efficient enough to resolve congestions

• Cooperation between ramp metering and
 – VSLC, Selectively prohibiting lane changes, Vehicle On-Board-Unit (OBU) and Driver information systems
Cooperation between vehicle OBU and on-ramp control computer (RMS-r2v) provide semi-automatic support to driver

– Oriented to the inexperienced drivers

• Problem with hesitation in merging and failed engine starts
• Matlab based macroscopic highway traffic simulator
 – Based on the Asymmetric Cell Transmission Model
• Original version contains local ramp metering only
• Augmentation for cooperative ramp metering and VSLC
• Zagreb bypass urban highway,
 – Section between nodes Lučko and Jankomir as use case
• Congestion created near Lučko node
• Quality measures
 – Travel time (TT)
 – Delay

<table>
<thead>
<tr>
<th>Traffic control algorithm</th>
<th>TT (min)</th>
<th>Delay (vehicle-hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>7.06</td>
<td>15.87</td>
</tr>
<tr>
<td>ALINEA</td>
<td>3.90</td>
<td>36.88</td>
</tr>
<tr>
<td>SWARM</td>
<td>3.71</td>
<td>41.49</td>
</tr>
<tr>
<td>HELPER</td>
<td>3.40</td>
<td>22.63</td>
</tr>
<tr>
<td>VSLC</td>
<td>5.59</td>
<td>12.24</td>
</tr>
<tr>
<td>HELPER + VSLC</td>
<td>3.30</td>
<td>21.50</td>
</tr>
<tr>
<td>ANFIS</td>
<td>4.10</td>
<td>19.75</td>
</tr>
</tbody>
</table>
• Cooperation between HELPER ramp metering algorithm and VSLC produces smallest TT
• ANFIS delay values are lower than other ramp metering algorithms
• Cooperation between standalone traffic control systems proposed
 – Ramp metering, VSLC and vehicles
• Cooperative control concept between ramp metering and VSLC is presented and tested
 – Best ratio between TT and delay
• ANFIS based learning approach for ramp metering developed
 – New platform for cooperation between different ramp metering algorithms
 – First results promising
• Developed algorithms tested in simulations with Zagreb bypass (nodes between Lučko and Jankomir) as use case
• Future work - adjustment of learning criterion function for ANFIS based ramp metering
 – Augmentation with VSLC cooperation
• The research reported in this paper is partially funded by the FP7 - Collaborative Project: Intelligent Cooperative Sensing for Improved traffic efficiency - ICSI (FP7-317671), University of Zagreb Faculty of transport and traffic sciences, and supported by the EU COST action TU1102
New Concepts for Urban Highways Control

Martin Gregurić, Edouard Ivanjko, Sadko Mandžuka

edouard.ivanjko@fpz.hr