
� reviewed paper

Proceedings REAL CORP 2015 Tagungsband
5-7 May 2015,Ghent, Belgium. http://www.corp.at

ISBN: 978-3-9503110-8-2 (CD-ROM); ISBN: 978-3-9503110-9-9 (Print)
Editors: M. SCHRENK, V. V. POPOVICH, P. ZEILE, P. ELISEI, C. BEYER

219

Data-based Collaboration on a Grand Scale

Markus Mayr, Paolo Fogliaroni

(Dipl. Ing. Markus Mayr, TU Vienna Department of Geodesy and Geoinformation, Gusshausstraße 27-29 1040 Vienna,
mayr@geoinfo.tuwien.ac.at)

(Dr.-Ing. Paolo Fogliaroni, TU Vienna Department of Geodesy and Geoinformation, Gusshausstraße 27-29 1040 Vienna,
paolo@geoinfo.tuwien.ac.at)

1 ABSTRACT

Modern spatial planning strongly relies on computer systems such as Computer-Aided Design tools (CAD)
and Geographic Information Systems (GIS). These, in turn, depend upon Database Management Systems:
complex computer systems designed to optimize data storage and retrieval. In this paper we try to sketch a
short survey of current DBMS technologies for the non-expert by overviewing their history, targets,
strengths, and weaknesses. The goal is to make the spatial planning community more aware of the present
and developing technologies such that future projects started can take advantage of the most suitable
technology.

2 INTRODUCTION

Over the years, methods and techniques employed in spatial planning evolved from good old ink and paper
to complex computer systems that allow, for example, for geo-location, automatic computation of light
exposure, traffic analysis, and so on.

Modern spatial planning strongly relies on continuously more advanced computer systems such as
Computer-Aided Design tools (CAD) and Geographic Information Systems (GIS). Moreover, thanks to
technological improvements, the amount of data that these computer systems are able to handle and make
available to spatial planners increases quickly and steadily. Nowadays, a planner can easily access
information about the population density of an area, the distribution of shops and roads, and average rainfall
levels. This abundance of information is helping the planner to make better-informed decisions.

Present trends in the planning field also started to incorporate the idea of public participation and volunteered
information (M.Foth et Al. 2009). In such scenarios, laymen are involved in the planning process as they
can provide the planner with detailed local information that is typically not present in official data bases
(Goodchild, M. F. 2007 and R. Sieber 2006). They can also provide suggestions or expectations about the
future development or requalification of a certain area (A. Poplin, 2012).

Thus, on their most basic level, both, present and future spatial planning activities strongly rely on so-called
Database Management Systems (DBMS). These are complex computer systems designed to optimize data
storage and retrieval.

The scope of this paper is to provide the spatial planning community with an overview of database
technologies and to discuss their strengths and weaknesses. The aim is to make the community more aware
of present and developing technologies so that future projects started by the community can take advantage
of the most suitable technologies, rather than the de-facto standards.

The paper starts in Section 3, sketching the historical evolution and the main principles and motivations
underlying the de-facto standard Relational Database Management System (RDBMS). Later, in Section 4,
the focus is shifted on more modern demands driven by social and collective projects. We discuss what
properties a database should have to support such projects and which particular technology affords for them.
At the end of this section we also discuss how the majority of present companies (including big internet
colossuses) partially insist in utilizing some parts of RDBMS even though they have been proven to be
inadequate to address modern requirements. Section 5, discusses a definitely edge-cutting topic: the semantic
web and linked data. These are core topics when dealing with collaborative and public participatory projects.
In parallel we discuss graph databases as the more straightforward technology to address the inherent
challenges. Finally, Section 6 concludes the paper.

3 RDBMS

In 1970, E.F. Codd introduced the formal foundation for relational database management systems (RDBMS)
Codd (1970) . His new model superseded the first and second generation of database management systems

Data-based Collaboration on a Grand Scale

220

REAL CORP 2015:
PLAN TOGETHER – RIGHT NOW – OVERALL

that were based on flat files and hierarchical structures (“Existing noninferential, formatted data systems
provide users with tree-structured files or slightly more general network models of the data.”) . This first
generations managed to cope with increasing volumes of data and kept them separated from parts of software
that was not central to the data storage. But, as Codd (1970) states, “future users of large data banks must be
protected from having to know how the data is organized in the machine (the internal representation)“.

This and a couple of additional concepts that increased the reliability of relational systems together with their
adoption by big companies like IBM ensured the distribution of this new kind of database system. Over the
last decades, RDBMS were heavily optimized, became multi-user compatible and ensured consistency. They
were perfectly suited for the monolithic structure of computer systems at that time and also did not stand in
contrast of a more hierarchical way of thinking about data. For many applications they are still the best
choice.

3.1 Architecture of RDBMS

The typical architecture of a RDBMS is one to multiple tables that are linked with one another to produce
results to queries provided in the so-called SQL query language (see figure 1).

Fig. 1: Requesting data from a traditional RDBMS

These tables are very rigid and their structure should, once defined, not be changed (e.g. removing a
column). Doing so could break existing constraints or queries. This means that the data structure which is
developed once for an RDBMS is fixed. Later changes are costly.

It is very common that one SQL query requests information that is distributed among multiple tables. These
tables have to be joined to query all data to answer the query.

3.1.1 ACID

A well known term that describes properties of a RDBMS is “ACID”. This stands for [A]tomicity,
[C]onsistency,[I]solation and [D]urability. Its origins lie in a paper from Gray and others (1981) and are
more concretized by Haerder and Reuter (1983) .

• Atomicity means that each operation or collection of operations on the database is performed as a
whole. If this is not possible, this operation is not performed at all.

• Consistency ensures that one operation is executed on a database with a valid status and leaves a
valid database behind. Valid in this sense means that the database satisfies all constraints and
limitations set up by the database engineer.

• Isolation is an important property for multi-user operation. Simply put, it ensures that operations
don't interfere with one another.

• Durability makes data in the system permanent. An unforeseen event should not result in the loss of
any data. There are mechanisms in place that ensure the storage of data even in the event of power
loss during a save procedure.

Markus Mayr, Paolo Fogliaroni

Proceedings REAL CORP 2015 Tagungsband
5-7 May 2015,Ghent, Belgium. http://www.corp.at

ISBN: 978-3-9503110-8-2 (CD-ROM); ISBN: 978-3-9503110-9-9 (Print)
Editors: M. SCHRENK, V. V. POPOVICH, P. ZEILE, P. ELISEI, C. BEYER

221

These four properties are the cornerstones to enabling a transaction-based system: Everything that was called
an operation above can also be called a transaction.

3.1.2 Transactions

Transactions are the key for multi-user access to a RDBMS and can either read from the database, write to
the database, or both. Depending on the kind of transaction, the portion of the database that is accessed
during its execution is locked to all other users.

Fig. 2: The transactional locking of a RDBMS

Figure 2 shows a situation where user 1 and user 2 are locking a single table because they want to write to it.
There is no problem here, because user 1 is not interested in table B and user 2 is not interested in table A.
Each of these two transactions can be performed without interference. If user 2 would want to write to table
A while it is locked by user 1, this transaction would have to wait.

In reality there exist multiple locking levels and different strategies to cope with conflicts, but the
information presented here suffices to draw a general picture. More information about the transactional
locking system is provided by (Kemper & Eickler 2011).

3.2 Problems with traditional RDBMS

There are two central problems that arise when using a traditional RDBMS with many users:

(1) When there is a huge amount of users, they will produce a great number of locks which interfere with
other users’ access to the database. Also, the locks are managed by a “locking manager” which is a resource
intensive process.

(2) As soon as there is either a very high amount of data in the database, it becomes necessary to split it up to
be stored on multiple single computers. A relational database system is not built for this. Since its structure
depends on relations between tables which have to be checked when performing most queries, the separation
of data is reduced to nearly nothing.

Imagine a service developed to support civic participation. It is very successful and is not allowed to have
any down time. Otherwise, the image of the system in the public's view would be damaged. It is very
difficult to scale a system as such up with an RDBMS to provide more capacity or to increase response times
by moving part of the data to servers nearer to the clients while keeping the original structure as it is.

Data-based Collaboration on a Grand Scale

222

REAL CORP 2015:
PLAN TOGETHER – RIGHT NOW – OVERALL

Since technology as a tool has to adapt to changing circumstances and not the other way around, we need
two solutions: a more effective way to deal with database locks and more distribute-oriented database
management systems.

4 SYSTEMS FOR COLLABORATION

Different database systems that strive for overcoming the deficiencies discussed in this chapter have been
developed. Cattell (2011) gives an overview of many of these NoSQL (“not only SQL”) databases and
describes their peculiarities. There also exist undertakings to adapt existing RDBMS according to some of
these concepts (e.g.ScaleBase_Inc. (2014)).

4.1 Theory

First, we will look at some of the theoretical concepts that are beneficial to supporting large scaled
collaborative data-based work.

4.1.1 CAP theorem

The CAP theorem was proven in 2002 by Gilbert and Lynch (2002) and describes the fact, that out of three
main properties of a distributed database system ([C]onsistency, [A]vailability and [P]artition Tolerance),
only two can be achieved at the same time (see figure 3).

Fig. 3: The CAP Theorem and its relation to three different database-systems

• Consistency describes the status that every single instance of a distributed database reflects the same
state. There is no difference in data on each of these systems. This is a challenge when there are lots
of changes to the database. In a consistent system, all these changes have to be transferred to the
other instances before these are allowed to operate again. Already in 1979, the problem was given a
lot of thought by Lindsay et al. (1979).

• Availability simply means that the system has to be able to respond to requests all the time.

• Partition Tolerance assures that the system is not affected by the loss of one single instance of the
distributed database.

Traditional RDBMS, like the widely used “MySQL” database, can provide consistency and availability, but
fail to provide partition tolerance. Other database-systems like the document-based “CouchDB” are unable to
guarantee consistency. What they offer instead is called eventual consistency which means, that over an
infinite span of time, all database instances will be consistent – but not at once. In many applications, strong
consistency is not needed (e.g. in social networks it does not matter if a comment pops up one second later).

Markus Mayr, Paolo Fogliaroni

Proceedings REAL CORP 2015 Tagungsband
5-7 May 2015,Ghent, Belgium. http://www.corp.at

ISBN: 978-3-9503110-8-2 (CD-ROM); ISBN: 978-3-9503110-9-9 (Print)
Editors: M. SCHRENK, V. V. POPOVICH, P. ZEILE, P. ELISEI, C. BEYER

223

4.1.2 Deatomization

One principle of RDBMS is that data should be stored in atomized form. This means that every kind of
information should be stored in a table unique to this type of information. While in reality, mostly because of
practical and performance reasons, this is not exercised to its absolute extent, an example for this would be a
dataset of inhabitants: In the first table, each person is assigned an ID number. In a second table, the person’s
names are related to their ID. To store addresses, a third table is used in the same manner. Later, at query
time, the different parts that belong together are assembled from these different tables and presented as
result. When dealing with a decentralized system, it is imperative to avoid the need to assemble data from
different tables (which is called “join”). Every join means more database instances that need to be queried,
more time that has to be waited for a result and more traffic for the network connection.

Instead of splitting information, the target is to keep together data that belongs together. Kinds of database-
systems that make heavy use of this method are document-based databases. One single document, which
corresponds to one database entry, contains all information about a single entry. In case of the previous
example of a database about inhabitants this would mean that every person is represented by one single
document. This document contains all information about one person. Deatomization plays a major role when
performing queries in distributed systems, as we will discuss in later sections.

4.1.3 Multi Version Concurrency Control

The Multi Version Concurrency Control mechanism (MVCC) is an alternative to the transaction-lock
system. The key attribute is that readers never block writers and writers never block readers. This method is
explained by looking at a document based NoSql databases named CouchDB.

Anderson, Lehnardt and Slater (2010) explain this system: “Documents in CouchDB are versioned (...). If
you want to change a value in a document, you crate an entire new version of that document and save it over
the old one. After doing this, you end up with two versions of the same document, one old and one new. “.
The new document then is compared to the old one and, if the old one was not changed by another user in the
meantime, the new document replaces the old one. If the old document was changed, an error message is
produced and the database programmer has to implement a method to resolve this conflict. This system is
compared with the transactional-lock of RDBMS by Anderson et al. (2010): "Under high load, a relational
database can spend more time figuring out who is allowed to do what, and in which order, than it does doing
any actual work.".

Fig. 4: A transactional locking mechanism vs. a multi-version concurrency control (image souce: (Anderson et al. 2010))

In figure 4 the two systems are visualized. On the left side, one can see that requests are blocked until a lock
is released. On the right side, access to one database entry is always possible. When storing a new version,
the old version is replaced after its version has been verified.

A Multi Version Concurrency Control mechanism can lift a lot of load on a database server when dealing
with lots of concurrent users. The downside of this mechanic is that a method has to be implemented on the
client to resolve possible conflicts. The database server is not influenced by this.

4.1.4 Queries

In 2008 Dean and Ghemawat (2008) published a new query method developed by Google to support
distributed database systems. They named it “map-reduce”. It is very well explained by their abstract: “Users
specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a
reduce function that merges all intermediate values associated with the same intermediate key.”.

Data-based Collaboration on a Grand Scale

224

REAL CORP 2015:
PLAN TOGETHER – RIGHT NOW – OVERALL

Given a dataset, a function specified by the user is executed for each entry in this dataset. This function may
do whatever the user pleases and produces one to many output entries. These resulting entries are then
processed by the optional reduce function that is performing a summarizing activity, also specified by the
user. This technique benefits greatly from a deatomized dataset.

Fig. 5: Requesting a user’s average voting by map-reduce

To illustrate this procedure, think of a civic involvement process where any user can rate three proposed
planning drafts by using the numbers 1 through 5 (see figure 5). This data is stored in a document-based
database where each document is identified by the user’s name as key (“User A”, “User B”, “User C”) and a
list of ratings for each proposal as value. We want to know what the average rating of each user is to find out
which persons are in general more likely to accept any planning procedure. We perform this query by first
using a map function that produces a collection of key/value pairs, each describing one rating (the value) for
one user (the key). Next, we run a reduce function that, per user, counts all the ratings and devides them by
their total sum. The result is the average rating per user.

The catch of key/value queries is that they can be performed on a collection of data without the need to join
any external dataset. If the data is split among two computers, each can perform a map without the other. The
results can be collected later.

The map-reduce method enables querying on distributed systems. One does not have to think about how to
construct a database query to avoid pitfalls like too many joins. Map-reduce queries are designed especially
for this purpose.

4.2 Examples

We will look at some of the companies that deal with similar problems: many users, high availability and fast
queries.

4.2.1 Google

In their research paper Chang et al. (2008) present a database system used and developed by Google named
Bigtable. It is built to store vast amounts of information up to the amount of petabytes. It is used by Google
to power most of their services, ranging from their web indexer to Google Earth, and many more. While it is
an oversimplification, one can describe a Bigtable database as a single table without joins that is optimized
for a huge amount of data. It supports multi-dimensional indexing through the inclusion of time as a third
dimension.

This system is proprietary and only used by Google internally. There exist similar open source
implementations called Hbase and Hypertable. Khetrapal and Ganesh (2006) did a comparison of these and
preferred Hbase because of its stability.

4.2.2 Facebook

Facebook uses a relational database management system as backbone (namely MySQL). To achieve the
possibility to distribute their data stores even with an RDBMS, they avoid joins and store data in a way that
made little use of the features a RDBMS has to offer. While there is no statement about this from Facebook
directly, it seems like the company started with well known web-technologies but was overrun by its own
success. The technology chosen did not scale natively with the increasing user base all over the world.

While Facebook is heavily modifying the system chosen to adapt it to their circumstances, they use different
non-relational database engines for different purposes. Originally only for their inbox search, a unique
solution named Cassandra was developed (Lakshman & Malik 2010). This system is published as
OpenSource and also used by other companies. It was developed to be expecially fast and fault tolerant in a

Markus Mayr, Paolo Fogliaroni

Proceedings REAL CORP 2015 Tagungsband
5-7 May 2015,Ghent, Belgium. http://www.corp.at

ISBN: 978-3-9503110-8-2 (CD-ROM); ISBN: 978-3-9503110-9-9 (Print)
Editors: M. SCHRENK, V. V. POPOVICH, P. ZEILE, P. ELISEI, C. BEYER

225

distributed network and is optimized for reading data from the database. For its Facebook Messages
application, a system called Hadoop is used (Borthakur et al. 2011) which is somewhat similar to Googles
Bigtable solution. For analysis of its immense cloud of data, a combination of specialized database software
is used, as stated by Thusoo et al. (2010): “A lot of different non-RDBMS components come together to
provide a comprehensive platform for processing and providing data at Facebook.”

4.2.3 Twitter

Similarly to Facebook, Twitter started out with the traditional RDBMS MySQL. Soon, its limits were
reached. Facebooks database system Cassandra was implemented together with an abstraction layer for
MySQL called Gizzard, enabling this database to be distributed by providing more than a simple RDBMS
(Cole 2011) . For other different scenarios, various other database systems are used.

As described by Metz (2014),by now Twitter has developed an own solution called Manhattan. For this
system, the previously discussed topics were taken into account. One main point Manhattan makes is to
allow the user to select whether strong consistency or eventual consistency is preferred.

4.2.4 Amazon

As described by DeCandia et al. (2007), Amazon uses an own database system called Dynamo (in its newest
version named DynamoDB). The affordances for such a system are described as follows: "Reliability is one
of the most important requirements because even the slightest outage has significant financial consequences
and impacts customer trust. In addition, to support continuous growth, the platform needs to be highly
scalable.". To achieve this kind of reliability, the Dynamo database system sacrifices consistency by making
it optional. In their paper, DeCandia et al. (2007) make it clear that the topmost priority is partition tolerance.
There is no failure allowed. The shopping chart has to be available all the time, even when a tornado destroys
a single data center. Vogels (2009) gives an in-depth report on how this eventual consistency is managed at
Amazon. The set up of a system with this level of reliability and scalability is greatly facilitated by
embracing the theoretical points mentioned before.

5 THE META-LEVEL: MODELLING COLLABORATION

We have looked at which techniques are available to cope with vast amounts of data coming from many
users. There is yet a second aspect: when looking at collaborative networks, there exists a special kind of
data structure that is suited for modelling network structures: So-called Graphs.

5.1 Neo4j

A very prominent example for graph databases is a rather young company called Neo Technology. They
offer a pure graph database called Neo4j. What is so unique about this database is that it does not only model
its data as a graph but actually stores it as such. Robinson, Webber and Eifrem (2013) describe this system in
depth.

The big gains of using this technique are the profoundly different analytical methods offered by a graph
database. It becomes possible to query for relations of the graph in a very efficient manner. This is a time
consuming task when using RDBMS. An example of such a query would be “all people that have up to a
third grade relative who likes to go biking”.

An alternative to Neo4j is Cayley, a true open source graph database developed by Peters et al. (2014). Its
origins lie within the technology used by the Google Freebase engine (Bollacker,Evans,Paritosh,Sturge &
Taylor 2008), "(...) a practical, scalable tuple database used to structure general human knowledge.".

5.2 Resource Description Framework (RDF)

When talking about graphs, collaboration and huge amounts of information, is becomes unavoidable to
mention RDF. Nearly any kind of information can be stored by so-called "rdf triples". These triples
constitute the base-granularity of all data to be stored and are one prerequisite to achive a maximum of
interoperability between different sources of data. Abadi,Marcus,Madden and Hollenbach (2009) say about
this: "(…) the ‘Resource Description Framework’, or RDF, represents data as statements about resources
using a graph connecting resource nodes and their property values with labeled arcs representing properties.
Syntactically, this graph can be represented using XML syntax (RDF/XML). This is typically the format for

Data-based Collaboration on a Grand Scale

226

REAL CORP 2015:
PLAN TOGETHER – RIGHT NOW – OVERALL

RDF data exchange; however, structurally, the graph can be parsed into a series of triples, each representing
a statement of the form < subject, property, object > (...)". Many efforts are made to make distributed sorage
and processing of triples as efficient as possible.

The driving force behind research about RDF is the liked data project. As said by Wood,Zaidman,Ruth and
Hausenblas (2014), "Linked Data makes the World Wide Web into a global database that we call the Web of
Data.". (figure 6 shows the current state of the linked data cloud with each node representing one single
source)

Fig. 6: Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak.
http://lod-cloud.net/

They further explain that "The term Linked Data refers to a set of best practices for publishing and
connecting structured data on the Web using international standards of the World Wide Web Consortium." .
To explain all the aspects involved is not the scope of this paper, but one can state that this is a huge project
with great implications on how information might be handeld in the future. From a technological perspective
it is still very young but its implications concerning data handling, data processing and data sharing are huge.

6 CONCLUSION

It becomes clear that the demands on database systems have changed: from stand-alone monolithic solutions
needed in 1970s, today we are in need of more flexible and distributed alternatives that can cope with
structured and, especially, low- or un-structured data.

The solution is not to "overload" present techniques by developing cumbersome workarounds to enable
unsupported features. Rather, one should take advantage of the whole arsenal of new methods and techniques
that are natively able to cope with problems arising when building collaborative and public participatory
systems.

Obviously, one has to know about them in order to make a wise and informed decision, as was the aim of
this paper: to make the spatial planning community more aware of the state-of-the-art and uprising
technologies.

Markus Mayr, Paolo Fogliaroni

Proceedings REAL CORP 2015 Tagungsband
5-7 May 2015,Ghent, Belgium. http://www.corp.at

ISBN: 978-3-9503110-8-2 (CD-ROM); ISBN: 978-3-9503110-9-9 (Print)
Editors: M. SCHRENK, V. V. POPOVICH, P. ZEILE, P. ELISEI, C. BEYER

227

7 REFERENCES
ABADI, D. J.; MARCUS, A.; MADDEN, S. R.; HOLLENBACH, K.: SW-Store: A Vertically Partitioned DBMS for Semantic Web

Data Management. In: The VLDB Journal Vol. 18, pp. 385-406. 2009
ANDERSON, J. C.; LENHARDT, J.; SLATER, N.: CouchDB: The definitive guide. O'Reilly Media Inc., 2010
BOLLACKER, K.; EVANS, C.; PARITOSH, P.; STURGE, T.;TAYLOR, J.: Freebase: A Collaboratively Created Graph Database

for Structuring Human Knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 1247-1250. 2008

BORTHAKUR, D.; GRAY, J.; SARMA, J. S.; MUTHUKKARUPPAN, K.; SPIEGELBERG, N.; KUANG, H.; RANGANATHAN,
K.; MOLKOV, D.; MENON, A.; RASH, S.; SHMIDT, R.;AIYER, A.: Apache Hadoop Goes Realtime at Facebook. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp 1071-1080. 2011

CATTELL, R.: Scalable SQL and NoSQL Data Stores, SIGMOD Rec., Vol 39, pp. 12-27. 2011
CHANG, F.; DEAN, J.; GHEMAWAT, S.; HSIEH, W. C.; WALLACH, D. A.; BURROWS, M.; CHANDRA, T.; FIKES, A.;

GRUBER, R. E.: Bigtable: A Distributed Storage System for Structured Data, ACM Trans. Comput. Syst., Vol 26, pp.
1-26. 2008

CODD, E. F.: A Relational Model of Data for Large Shared Data Banks, Commun. ACM, Vol 13, pp. 377-387. 1970
COLE, J.: Big and Small Data at @Twitter. In: O'Reilly MySQL CE. 2011
DEAN, J.; GHEMAWAT, S.: MapReduce: simplified data processing on large clusters. In: Communications of the ACM, Vol 51,

pp. 107-113. 2008
DECANDIA, G.; HASTORUM, D.; JAMPANI, M.; KAKULAPATI, G.; LAKSHMAN, A.; PILCHIN, A.; SIVASUBRAMANIAN,

S.; VOSSHALL, P.; VOGELS, W.: Dynamo: Amazon's Highly Available Key-value Store. In: SIGOPS Oper. Syst.
Rev., Vol. 41, pp. 205-220. 2007

FOTH, M.; BAJRACHARYA B.; BROWN R.; HEARN G.: The Second Life of urban planning? Using NeoGeography tools for
community engagement. In: Journal of Location Based Services, Vol 3, Issue 2, pp. 97-117. 2009

GILBERT, S.; LYNCH, N.: Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. In:
SIGACT News, Vol. 33, pp. 51-59. 2002

GOODCHILD, M. F.: Citizens as sensors: the world of volunteered geography. In: GeoJournal, Vol 69, pp. 211-221. 2007
GRAY, J.: The transaction concept: Virtues and limitations. In: Proceedings of the Seventh International Conference on Very Large

Data Bases, Vol 7, pp. 144-154. Cannes, 1981
HAERDER, T.; REUTER, A.: Principles of Transaction-oriented Database Recovery. In: ACM Comput. Surv., Vol. 15, pp. 287-317.

1983
KEMPER, A. and EICKLER, A.:Datenbanksysteme: Eine Einführung. Oldenbourg Verlag, 2011
KHETRAPAL, A. and GANESH, V.: HBase and Hypertable for large scale distributed storage systems. Dept. of Computer Science

Purdue University, 2006
LAKSHMAN, A.; MALIK, P.: Cassandra: A Decentralized Structured Storage System. In: SIGOPS Oper. Syst. Rev., Vol. 44, pp.

35-40. 2010
LINDSAY, B. G.; SELINGER, P. G.; GALTIERI, C. A.; GRAY, J. N.; LORIE, R. A.; PRICE, T. G.; PUTZOLU, F.; TRAIGER, I.

L.; WADE, B. W.: Notes on Distributed Databases. IBM, 1979
METZ, C.: This is what you build to juggle 6,000 Tweets a second. In: Wired Magazine Online, URL:

http://www.wired.com/2014/04/twitter-manhattan . 2014
PETERS, A.; MICHENER, B.; LEENDERS, B.; GRAVES, J.; JAY, J.; UZAMERE, P.; KORTSCHAK, R. D.; ARMSTRONG, T.;

LI, Z.: Cayley - An open-source graph database, URL: https://github.com/google/cayley . 2014
POPLIN, A.: Playful public participation in urban planning: A case study for online serious games. In: Computers, Environment and

Urban Systems, Vol. 36, pp. 195-206. 2012
ROBINSON, I.; WEBBER, J.;EIFREM, E.: Graph databases. O'Reilly Media, Inc. 2013
SCALEBASE INC.: ScaleBase - A Distributed MySQL Database, URL: https://www.scalebase.com . 2014
SIEBER, R.: Public Participation Geographic Information Systems: a Literature Review and Framework. In: Annals of the

association of American Geographers, Vol. 96, Issue 3, pp. 491-507. 2006
THUSOO, A.; SHAO, Z.; ANTHONY, S.; BORTHAKUR, D.; JAIN, N.; SEN SARMA, J.; MURTHY, R.; LIU, H.: Data

Warehousing and Analytics Infrastructure at Facebook. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pp. 1013-1020. 2010

VOGELS, W.: Eventually Consistent. In: Commun. ACM, Vol. 52, pp. 40-44. 2009
WOOD, D.; ZAIDMAN, M.; RUTH, L. and HAUSENBLAS, M.: Linked Data. Manning Publications Co. 2014

